2568 P. Seeman

- Tonon, P. F. Spano and M. Trabucchi, *J. Neurochem.* **32**, 1547 (1979).
- 63. O. S. Steinsland and J. P. Hieble, *Science* **199**, 443 (1978).
- 64. C. Bell and G. Matalanis, *Br. J. Pharmac.* **61**, 291 (1977).
- 65. W. Hope, M. W. McCulloch, M. J. Rand and D. F. Story, *Br. J. Pharmac.* **64**, 527 (1978).
- 66. O. S. Steinsland, J. P. Hieble and D. J. Laubach, Proc.
- Seventh Int. Congr. Pharmac. (Paris) Abstr. 2368. Int. Union of Pharmac., Paris (1978).
- 67. M. L. Dobocovich and S. Z. Langer, J. Pharmac. exp. Ther. 212, 144 (1980).
- 68. F. M. Tayo, Br. J. Pharmac. 59, 511P (1977).
- 69. H. Fuder and E. Muscholl, Naunyn-Schmiedeberg's Archs Pharmac. 305, 109 (1978).
- 70. M. A. Enero and S. Z. Langer, Naunyn-Schmiedeberg's Archs Pharmac. 289, 179 (1975).

COMMENTS ON A COMMENTARY

Commentary articles are written to explore provocative new ideas and developing or controversial areas of research. To increase the exchange of information and ideas, we are publishing the following *Comments on a Commentary*, in which Dr. Ian Creese and Dr. David R. Sibley offer their observations on the article "Nomenclature of Central and Peripheral Dopaminergic Sites and Receptors" by Dr. Philip Seeman, published in this issue, and also provide some alternative thoughts on this important area of research. From time to time in the future we will solicit similar constructive comments on selected *Commentary* articles from experts in appropriate fields.

While the final decision on selection of authors for either *Commentaries* or *Comments on a Commentary* will be made at the discretion of the editors, we welcome suggestions from readers, which should be addressed to: Dr. C. N. Gillis, Department of Pharmacology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510, U.S.A., or Professor Z. M. Bacq, Laboratoire de Pathologie et Therapeutiques, Université de Liège, 32 Boulevard de la Constitution, Liège, Belgium.

Biochemical Pharmacology, Vol. 31, No. 16, pp. 2568-2569, 1982. Printed in Great Britain.

0006-2952/82/162568-02 \$03.00/0 © 1982 Pergamon Press Ltd.

COMMENTS ON THE COMMENTARY BY DR. SEEMAN

IAN CREESE and DAVID R. SIBLEY

Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA 92093, U.S.A.

Seeman's attempt to equate radioligand binding data [1] with more customary approaches to classify dopamine receptors is to be commended. Because radioligand binding measures receptor occupancy directly and the pharmacological effects of antagonists are proposed to be mediated solely through receptor occupation, a direct comparison of their molar potencies is theoretically correct. However, although the rank order potencies of agonists may be identical in such comparisons, their absolute molar potencies need not agree. A physiological response may not be linearly related to agonist binding because of spare receptors, efficacy considerations, high efficiency receptor/effector coupling mechan-

isms or intracellular amplification events. These caveats have not been adequately considered to warrant the proposed classification.

We disagree with the conclusion that D_2 and D_4 sites represent distinct dopamine receptors. It should be noted that antagonists have identical affinities at both sites. The distinguishing feature between D_2 and D_4 sites is that of absolute molar agonist affinities. Seeman has made a number of errors in his interpretation of these data. The first problem lies in his derivation of agonist potencies for D_2 sites. He uses IC_{50} values from agonist/ 3H -antagonist displacement curves in membrane preparations. Such curves have low Hill coefficients (<1) and are

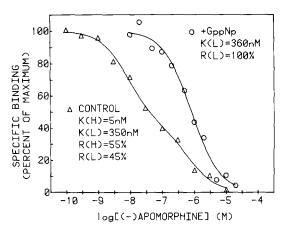


Fig. 1. Computer modeled curves for a (-)apomorphine/ [³H]spiroperidol competition experiment in bovine anterior pituitary membranes.

biphasic, possessing more than one binding component. Such IC50 values are biologically meaningless. We have made a detailed computer analysis of agonist/3H-antagonist displacement curves to D-2 receptors in the pituitary [2], and it is clear that one can identify distinct high- and low-affinity binding components. We have designated the high- and low-affinity components R_H and R_L with the respective dissociation constants $K_{\rm H}$ and $K_{\rm L}$ (Fig. 1). These agonist-defined high- and low-affinity components would thus correspond to Seeman's D₄ and D₂ sites. However, our conclusion is that these components are two states of a singular D-2 receptor. This is supported by the finding that in the presence of guanine nucleotides only the low-affinity component is observable (Fig. 1). Since nucleotides do not affect ³H-antagonist binding, which measures R_H plus R_L, then there must be conversion of R_H to R_L.

Seeman does not present data (nor are any available) for *molar* agonist potencies representative of physiologic D₂ *site* interactions. The statement that "IC₅₀ values of agonists . . . at this site correlate very well with the doses which elicit the various dopaminergic behaviors" is misleading since such correlations are based on molar IC₅₀ values of agonists in displacing ³H-antagonist binding with mg/kg of peripherally administered agonists which induce central behavioral effects.

A second problem arises when Seeman compares his D₂ agonist IC₅₀ values in membrane binding experiments with pharmacologically derived EC₅₀ values, using intact tissues. Based on the observation that the former values are higher than the latter ones, he concludes that different receptor subtypes (D₂ and D₄) are involved. For reasons discussed above, however, this comparison is error prone and is not a sufficient criterion for receptor classification. With this caveat in mind, one should note that there is a good correlation between the D₂ K_H values for agonists and their EC₅₀ values in producing D-2 responses. Since ³H-agonists only label the R_H state of the D-2 receptor, agonist/³H-agonist displacement

curve affinities represent these $K_{\rm H}$ values as seen in Table 6. [1]. Of course, absolute affinities of agonists are highly dependent on assay conditions. For instance, the $K_{\rm H}$ for dopamine can vary between 5 and 300 nM depending upon the cation concentration and the temperature of the assay. Furthermore, comparisons with absolute potencies in hormone release experiments are suspect because dopamine agonists are unstable and incubations are conducted for up to 2 hr.

We agree with Seeman's categorization of D-1 receptors. However, receptors linked to stimulation of adenylate cyclase also demonstrate a high-affinity agonist binding state in membranes. Thus, some D₃ binding of ³H-agonists may represent labeling of this state of the D-1 receptor. One should note that antagonist affinities at D-1 and D₃ sites are similar, and some high-affinity agonist (low-affinity antagonist) binding sites are GTP sensitive which supports this hypothesis. In addition, the statement that the rank order of potencies of drugs at the D₂ site is the same as that for the D-1 site is incorrect. At D-1 sites phenothiazines are more potent than butyrophenones whereas at D-2 sites butyrophenones and phenothiazines demonstrate high affinity.

Finally, although Seeman is to be commended for attempting to integrate studies of peripheral dopamine receptors with those in the CNS, many of these studies have been conducted under conditions where tissue has been pretreated with phenoxybenzamine, an agent which is now known to irreversibly inactivate some classes of dopamine receptors [3]. Furthermore, in dealing with intact tissue it is unclear whether some of the pharmacological effects observed might be mediated through interactions with other neurotransmitter receptors present in the tissue.

In conclusion, our categorization of dopamine receptors is as follows:

D-1 receptors: Dopamine receptors associated with stimulation of adenylate cyclase activity, labeled by ³H-thioxanthenes and possibly by ³H-agonists. Low affinity for butyrophenones and sulpiride.

D-2 receptors: Dopamine receptors associated with inhibition of adenylate cyclase activity labeled with high affinity by ³H-antagonists. ³H-Agonists label a high-affinity state of this receptor in the absence of guanine nucleotides. Guanine nucleotides convert this high-affinity agonist binding state to a low-affinity agonist binding state.

D-3 binding sites: Sites labeled with high affinity by ³H-agonists which demonstrate low affinity for butyrophenones. Since no physiological effect has been associated directly with these sites, they may not, as yet, be termed receptors.

REFERENCES

- 1. P. Seeman, Biochem. Pharmac. 31, 2563 (1982).
- D. R. Sibley, A. De Lean and I. Creese, J. biol. Chem. 257, 6351 (1982).
- M. W. Hamblin and I. Creese, *Molec. Pharmac.* 21, 44 (1982).